Microstome--macrostome transformation in the polymorphic ciliate Tetrahymena vorax leads to mechanosensitivity associated with prey-capture behaviour.

نویسندگان

  • Heidi K Grønlien
  • Bjarne Hagen
  • Olav Sand
چکیده

Ciliates feed by phagocytosis. Some ciliate species, such as Tetrahymena vorax, are polymorphic, a strategy that provides more flexible food utilization. Cells of the microstomal morph of T. vorax feed on bacteria, organic particles and organic solutes in a non-selective manner, whereas macrostome cells are predators that consume specific prey ciliates. In the present study, we investigated a possible correlation between phagocytosis and mechanosensitivity in macrostome T. vorax. Microstome cells seem to be insensitive to mechanical stimulation whereas macrostome cells depolarise in response to mechanical stimulation of the anterior part of the cell. The amplitude of the receptor potential induced by either a prey ciliate or a 5 μm push by a glass needle was sufficient to elicit a regenerative Ca²⁺ spike. The difference in mechanosensitivity of the two forms correlates with the swimming behaviour when hitting an obstacle; microstome cells swim alongside the obstacle whereas macrostome cells swim backwards, turn and resume forward swimming. Macrostome cells prevented from backward swimming and the subsequent turn failed to capture prey cells in their pouch. Macrostome cells consumed heterospecific prey ciliates preferentially over conspecific microstome cells. This selectivity is not due to electrical membrane responses elicited by physical contact. Both microstome and macrostome cells accumulated in an area containing putative substances released from heterospecific prey ciliates, but the substances did not elicit any electrophysiological membrane responses. We conclude that the mechanosensitivity of macrostome cells is associated with the prey-capture behaviour, whereas the selective phagocytosis is probably due to chemo-attraction to heterospecific prey ciliates.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

In the polymorphic ciliate Tetrahymena vorax, the non-selective phagocytosis seen in microstomes changes to a highly selective process in macrostomes.

Ciliates use phagocytosis to acquire edible particles. The polymorphic ciliate Tetrahymena vorax appears in two forms ('microstomes' and 'macrostomes'). Transformation of microstomes into macrostomes takes place in the presence of the ciliate Tetrahymena thermophila and enables the macrostome to phagocytose the latter species. The non-specific, constitutive phagocytosis in microstomes thereby c...

متن کامل

Chemo-accumulation without changes in membrane potential in the microstome form of the ciliate Tetrahymena vorax.

The swimming behaviour of ciliates is mainly determined by membrane potential and transmembrane fluxes. In a chemical gradient, swimming ciliates may approach or move away from the source. Based on experiments on Paramecium, it is generally assumed that chemical attractants and repellents affect the swimming behaviour of ciliates by specific changes in the membrane potential. We have examined w...

متن کامل

Survival of Legionella pneumophila in the cold-water ciliate Tetrahymena vorax.

The processing of phagosomes containing Legionella pneumophila and Escherichia coli were compared in Tetrahymena vorax, a hymenostome ciliated protozoan that prefers lower temperatures. L. pneumophila did not multiply in the ciliate when incubated at 20 to 22 degrees C, but vacuoles containing L. pneumophila were retained in the cells for a substantially longer time than vacuoles with E. coli. ...

متن کامل

A complex of iron and nucleic acid catabolites is a signal that triggers differentiation in a freshwater protozoan.

The polymorphic ciliated protozoan Tetrahymena vorax can undergo differentiation from the microstomal form, which normally feeds on bacteria and other particulate matter, into the macrostomal cell type, which is capable of ingesting prey ciliates. The process is triggered by exposure of the microstome to an inducer contained in stomatin, an exudate of the prey. To establish the identity of the ...

متن کامل

Stability analysis of a fractional order prey-predator system with nonmonotonic functional response

In this paper, we introduce fractional order of a planar fractional prey-predator system with a nonmonotonic functional response and anti-predator behaviour such that the adult preys can attack vulnerable predators. We analyze the existence and stability of all possible equilibria. Numerical simulations reveal that anti-predator behaviour not only makes the coexistence of the prey and predator ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of experimental biology

دوره 214 Pt 13  شماره 

صفحات  -

تاریخ انتشار 2011